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Abstract 

I t  is  shown t h a t  equa t ions  of motion f o r  a t u r b u l e n t  

f low can be d e r i v e d  which are c o n s i s t e n t  w i th  Heisenberg ' s  

s t a t i s t i c a l  theo ry  of turbulence .  These equa t ions  are 

l i n e a r  i n t e r g r o - d i f  f e r e n t i a l  e q u a t i o n s  e x p r e s s i n g  t h e  non- 

local i n t e r a c t i o n  of eddies  wi th  d i f f e r e n t  wave numbers 

on t h e  basis  o f  Heisenberg 's  s t a t i s t i c a l  theory .  

The nonloca l  terms i n  t h e s e  equa t ions  of motions f o r  

t u r b u l e n t  f low have t o  be determined from t h e  energy spectrum 

of  t h e  t u r b u l e n t  motion. S ince  t h e  energy spectrum i s  

known only  a f t e r  t h e  t u r b u l e n t  f low has  been determined,  

one has  t o  s o l v e  t h e  nonloca l  l i n e a r  equa t ions  of motions 

s e l f - c o n s i s t e n t l y  wi th  t h e  n o n l i n e a r  i n t e r g r o - d i f  f e r e n t i a l  

e q u a t i o n  f o r  t h e  energy spectrum. 

I n  c o n t r a s t  t o  t h e  Navier-Stokes e q u a t i o n s ,  t h e  non- 

l i n e a r i t y  occur s  he re  only i n  t h e  e q u a t i o n  f o r  t h e  energy 

spectrum and n o t  i n  t h e  equa t ion  o f  motion i t s e l f .  This  

f a c t  f ac i l i t a t e s  t h e  i n t e g r a t i o n  o f  t h e s e  e q u a t i o n s  g r e a t l y .  
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Our a n a l y s i s  i s  extended t o  i n c l u d e  t u r b u l e n t  con- 

vec t ion .  

equa t ions  of motion and energy e q u a t i o n s  are formula ted  

which are c o n s i s t e n t  w i t h  t h e  equa t ions  of t h e  energy 

spectrum f o r  f r e e  t u r b u l e n t  convec t ion  d e r i v e d  by 

Ledeoux, Schwarzschild and Sp iege l .  From t h e s e  e q u a t i o n s ,  

d i s p e r s i o n  r e l a t i o n s  and growth rates are ob ta ined  

which t a k e  i n t o  account  t h e  phenomena of t u r b u l e n t  

mixing. With t h i s  method, one can t rea t  t u r b u l e n t  con- 

v e c t i o n  problems which arise i n  s t e l l a r  and p l a n e t a r y  

atmospheres where t h e  c l a s s i c a l  s o l u t i o n  of laminar  

free convec t ion  cannot  be app l i ed .  

I n  t h e  s p i r i t  of Heisenberg 's  hypo thes i s ,  
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1. Turbulent Fluid Motion and the Hypothesis of Isotropic 

Homogeneous Turbulence. 

We will assume that by some degree of approximation the 

motion of a turbulent fluid can be thought of as being a small 

scale turbulent velocity superimposed on the average fluid 

velocity. The "eddies" of the turbulent velocity field will 

interact and thus give rise to an additional frictional force 

which might be thought of as being caused by an eddy viscosity. 

This picture is in someway analogous to the kinetic theory 

description of a gas or fluid. There also the fluid motion may be 

described by a small scale molecular motion superimposed onto an 

average fluid motion. The average velocity which defines a 

convenient frame of reference in which the fluid is at rest, is 

obtained by taking the velocity moment of the molecular 

velocity distribution function. The molecular velocity, super- 

imposed on this average velocity, is then determined by the 

distribution function in this frame of reference. 

As an example, one may consider the case of uniform fluid 

motion. If the fluid is in thermodynamic equilibrium, the 

distribution function in the frame at rest will be a displaced 

Maxwellian. Taking the velocity moment of this distribution 

function, one obtains the average fluid motion. A Galilei 

transformation to a system moving with this average velocity 

will then define the system at 
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rest w i t h  t h e  f l u i d .  The d i s t r i b u t i o n  f u n c t i o n  i n  

t h i s  new system is  a homogeneous Maxwellian. 

\ I n  f l u i d  dynamics, t h e  assumption of a homogeneoud 

Maxwellian i s  only  val ide i n  very  s p e c i a l  cases, uniform 

motion be ing  a t r i v i a l  one. 

i n s t a n c e ,  i n  any flow w i t h  s h e a r ,  where momentum i s  

exchanged by p a r t i c l e  motion between d i f f e r e n t  f l u i d  

l a y e r s .  As a r e s u l t  the  d i s t r i b u t i o n  f u n c t i o n  changes 

from a Maxwellian t o  some nonequi l ibr ium d i s t r i b u t i o n  

func t ion .  However, t h e  r e l a x a t i o n  t i m e ,  be ing  e s s e n t i a l l y  

t h e  p a r t i c l e  c o l l i s i o n  t i m e ,  i s  g e n e r a l l y  so s h o r t  t h a t  

a d e v i a t i o n  of  t h e  d i s t r i b u t i o n  f u n c t i o n  from a Maxwellian 

w i l l  be ve ry  s m a l l .  A l s o ,  n e a r  a boundary t h e  d i s t r i b u t i o n  

func t ion  w i l l  be a f f e c t e d  by c o l l i s i o n s  w i t h  t h e  w a l l .  

But as long  as t h e  mean f r e e  p a t h  i s  s m a l l  compared wi th  

t h e  character is t ic  d i s t a n c e  determined by t h e  s p a t i a l  

s e p a r a t i o n  of  t h e  boundar ies ,  t h e  d e v i a t i o n  of t h e  d i s -  

t r i b u t i o n  f u n c t i o n  from a Maxwellian i s  always n e g l i g i b l e .  

The assumption of a Maxwellian pe rmi t s  one t o  o b t a i n  

s imple e x p r e s s i o n s  for t he  v i scous  f r i c t i o n  force i n  t h e  

Navier-Stokes equa t ion .  

I t  w i l l  n o t  be v a l i d ,  f o r  

I n  t h e  problem of  t u r b u l e n t  motion, it is  tempting 

t o  ask whether a s imilar  approximation cannot  be made 

t h e r e  too,  by looking  a t  t h e  analogy between c o l l i d i n g  

molecules  i n  k i n e t i c  theory and i n t e r a c t i n g  e d d i e s  i n  

t u r b u l e n t  mixing. Because o f  t h e  analogy between t h e  

t w o  d i f f e r e n t  processes  i n  k i n e t i c  t heo ry ,  t h e  assumption 
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of an  i s t r o p i c  Maxwellian v e l o c i t y  d i s t r i b u t i o n  can only 

correspond t o  a t u r b u l e n t  motion w i t h  an i s o t r o p i c  

spectrum of turbqlence .  I f  w e  make t h i s  assumption t h e  

t u r b u l e n t  f l u i d  motion may be d e s c r i b e d  by an average 

v e l o c i t y  over  which a smal l  scale i s o t r o p i c  t u r b u l e n t  

motion is superimposed. 

The v a l i d i t y  o f  an i s o t r o p i c  Maxwellian v e l o c i t y  

d i s t r i b u t i o n  i n  k i n e t i c  theory  r e s u l t e d  from a mean. f r e e  

path much smaller than  the  c h a r a c t e r i s t i c  l e n g t h  o f  t h e  

f l u i d .  

by which t h e  f l u i d  relaxes r a p i d l y  i n t o  a Maxwellian 

d i s t r i b u t i o n ,  and t h e  assumption of  a s m a l l  mean f r e e  

p a t h  i s  u s u a l l y  s a t i s f i e d  f o r  m o s t  problems of i n t e r e s t .  

A small  mean f r e e  p a t h  i m p l i e s  many c o l l i s i o n s  

From t h e  analogy between c o l l i d i n g  p a r t i c l e s  and 

i n t e r a c t i n g  eddies i t  follows t h a t  t h e  assumption of a 

s m a l l  mean f r e e  p a t h  i n  k i n e t i c  t heo ry  must correspond 

i n  tu rbu lence  t o  t h e  assumption of  a s m a l l  "mean f r e e  

pa th"  f o r  a t u r b u l e n t  eddy, s m a l l  i f  compared w i t h  t h e  

dimensions of t h e  system, i n  which t h e  t u r b u l e n t  motion 

t a k e s  p l a c e .  However, t h e  assumption of  a s m a l l  "mean 

f r e e  pa th"  f o r  t u r b u l e n t  eddies cannot  be s a t i s f i e d  as 

w e l l  as t h e  corresponding assumption of a small mean f r e e  

pa th  i n  k i n e t i c  theory .  The reason f o r  t h i s  can be seen  

as fo l lows:  Turbulent  motion can be  thought  o f  as 

c o n s i s t i n g  of e d d i e s  o f  d i f f e r e n t  s i z e s  desc r ibed  by a 

spectrum i n  wave number space .  According t o  Heisenberg ' s  

t heo ry  t h e  "mean f r e e  pa th"  of an eddy wi th  a wave number 
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k i s  of t h e  order l /k .  I f  t h e  characterist ic dimension 

of the  system i s  given by L ,  then  t h e  assumption of a 

s m a l l  "mean free path" w i l l  break down fo r  eddies w i t h  a 

s i z e  comparable t o  or  l a r g e r  t han  L ,  o r  f o r  wave numbers 

smaller than  k = 

same order of  magnitude as  t h e  c u t o f f  wave number i n  

Heisenberg 's  s t a t i s t i ca l  theo ry  of homogeneous isotropic 

turbulence .  

= 1 / L ,  where wave number kc is  of t h e  kc 

2. Equat ions of Motions and Energy Spectrum of  Turbulence.  

W e  are cons ide r ing  an incompress ib le  f l u i d  w i t h  t h e  

equa t ion  of motion 

1 2 
P 

av 
I + (v*V)v = --vp + u v  v at 
- - - - I (2.1) 

and t h e  equa t ion  of c o n t i n u i t y  

a i v  v - = 0 ( 2 . 2 )  

I n  equa t ion  ( 2 . 1 )  the t e r m  (v*V)v  r e p r e s e n t s  a n o n l i n e a r  - - 
i n t e r a c t i o n  and it i s  t h e i s  i n t e r a c t i o n  which leads t o  

tu rbu lence .  
(1) 

I n  Heisenberg ' s  s t a t i s t i c a l  t heo ry  , the  behavior 

of i s t r o p i c  homogeneous tu rbu lence  i s  described by an  

e q u a t i o n  fo r  t h e  energy spectrum. Heisenberg ' s  t heo ry  

w a s  g e n e r a l i z e d  by Chandrasekhar (2) t o  i n c l u d e  t i m e  

dependence. I n  t h i s  theory  , t h e  energy spectrum .F (k , t) 

of t u r b u l e n t  motion i s  given by the  s o l u t i o n  of an i n t e g r o -  

d i f f e r e n t i a l  equat ion:  
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k a 
a t  - --- F ( k '  , t ) d k '  = 

kO 

2 2 245 k = (kx + k + kZ) Y 

I n  equa t ion  (2.3) t h e  second t e r m  i n  t h e  squa re  b r a c k e t  

i s  a f u n c t i o n  of  t h e  wave number k aqd may be cons idered  

as a t u r b u l e n t  or eddy v i s c o s i t y ,  which i s  t h e  fundamental 

assumption of Heisenberg 's  t heo ry .  The c o n s t a n t  K is  a 

u n i v e r s a l  d imens ionless  cons t an t  of t h e  o r d e r  1. Thus, 

w e  d e f i n e  t h e  eddy v i s c o s i t y  v ( k )  i n  wave number space  by 

( 2 . 4 )  

k is  t h e  c u t o f f  wave number which can be  r e l a t e d  t o  t h e  

s i z e  of t h e  l a r g e s t  p o s s i b l e  eddy c o n s i s t e n t  w i t h  t h e  f l u i d  

boundaries .  

0 

To unders tand  t h e  p h y s i c a l  meaning of Heisenberg ' s  

t h e o r y ,  w e  have t o  d e r i v e  an equa t ion  for t h e  energy spectrum 

from t h e  e q u a t i o n s  of  motion (2.1) assuming i s o t r o p i c  

homogeneous tu rbu lence .  For  t h i s  w e  expand t h e  v e l o c i t y  

and p r e s s u r e  f i e l d s  i n  wave number space  
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The assumption of i s o t r o p y  impl i e s  t h a t  w e  can average 

t h e  e x p r e s s i o n s  for  t h e  energy spectrum over a s p h e r i c a l  

s u r f a c e  i n  k - - space.  The energy spectrum F ( f , t )  i s  

then  g iven  by 

v 
8r 3 F ( k , t )  = 

I n  equa t ion  (2.7) V i s  a 

b r a c k e t s  denote  ensemble 

no rma l i za t ion  volume and t h e  

averages .  

The equa t ion  f o r  t he  energy spectrum is  then  ob- 

t a i n e d  by t a k i n g  t h e  F o u r i e r  t r ans fo rm of equa t ion  ( 2 . 1 )  

and m u l t i p l i n g  it by t h e  complex conjugate  t r ans fo rm o f  

t h e  v e l o c i t y  v* - ( k _ , t ) ,  and i n  accordance wi th  ( 2 . 7 )  

t a k i n g  t h e  average over a s p h e r i c a l  s u r f a c e  i n  k - - space .  

W e  f i n a l l y  t a k e  i n t o  account  t h e  van i sh ing  of p r e s s u r e  
( 3 )  v e l o c i t y  c o r r e l a t i o n s  i n  t h e  case of i s o t r o p i c  tu rbu lence  

and o b t a i n  
OD 

2 - = 2vk F - I . Q ( k , k ' ) d k '  at 
ko 

I n  e q u a t i o n  ( 2 . 8 )  Q r e s u l t s  from t h e  n o n l i n e a r  i n t e r a c t i o n  
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t e r m  and i s  t r i l i n e a r  i n  the  F o u r i e r  t r ans fo rm of  t h e  

v e l o c i t y  f i e l d .  By comparing equa t ion  (2 - 3 )  wi th  equa t ion  

(2.81, it follows t h a t  Heisenberg 's  t heo ry  i m p l i e s  t h e  

ad hoc assumption t h a t  

Althought  i s  i s  n o t  obvious how good t h i s  assumption 

r e a l l y  i s  w e  can say  t h a t  t h e  ove ra l l  agreement of 

Heisenberg ' s  theory  w i t h  measured energy s p e c t r a  suppor t s  

t h e  hypo thes i s  (2.9) . 
W e  are t h e r e f o r e  i n c l i n e d  t o  ask t h e  fo l lowing  

ques t ion :  Waht k ind  of equa t ion  must r e p l a c e  ( 2 . 1 )  

i n  o r d e r  t h a t  c o n d i t i o n  ( 2 . 9 )  i s  f u l f i l l e d  e x a c t l y ?  

The answer t o  t h i s  q u e s t i o n  must l e a d  t o  a se t  of 

equa t ions  of  motion c o n s i s t e n t  w i th  Heisenberg ' s  

s t a t i s t i c a l  theo ry  and which d e s c r i b e  t h e  motion of a 

t u r b u l e n t  flow. 

T o  o b t a i n  t h e  answer w e  proceed as fo l lows:  

I .  W e  i n t r o d u c e  an eddy v i s c o s i t y  i n  wave number 

space  de f ined  by v E  (k)  . 
from t h e  eddy v i s c o s i t y  ( 2 . 4 )  b u t  r e l a t e d  t o  it by 

This  eddy v i s c o s i t y  i s  d i f f e r e n t  

. (2.10) 
1 [v(k )  I k F ( k ' ) k t 2 d k '  

v C ( k )  =- - dk 
ko k2F (k) 

11. With t h e  eddy v i s c o s i t y  d e f i n e d  by equa t ion  (2.10) we 

c o n s t r u c t  t h e  f u n c t i o n  
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111. The eaua t ion  of mot ion  (2.1) i s  then  r ep laced  by t h e  

fol lowing equa t ion  

Equat ion (2 .12 )  w i l l  lead e x a c t l y  t o  Heisenberg ' s  expres s ion  

f o r  t h e  energy spectrum, which may e a s i l y  be demonstratee.  For 

t h e  proof w e  t a k e  t h e  F o u r i e r  t ransform of equa t ion  (2 .12 )  : 

kie n u l t i p l y  equa t ion  (2.13) with  - -  v*(k)  and average accord ing  t o  

( 2 . 7 ) .  As before we t a k e  i n t o  account  t h e  van i sh ing  of p res su re -  

v e l o c i t y  c o r r e l a t i o n s  and have 

2 {v + vE(k)lk2F aF - - =  a t  ( 2 . 1 4 )  

I n t e g r a t i n g  equa t ion  ( 2 . 1 4 )  f r o m  k '=ko t o  k'=k w e  o b t a i n  

equa t ion  (2.3) . T H i s  complete t h e  proof .  

By comparing equa t ion  ( 2 . 1 2 )  w i th  equa t ion  ( 2 . 1 1 ,  

one can see t h a t  t h e  t e r m  (v*A)v  has  been r ep laced  by a 

non loca l  tenn. The n o n l o c a l i t y  i s  a r e s u l t  of  t h e  wave- 

number-depentend eddy v i s c o s i t y .  

s u r p r i s i n g  because t h e  e d d i e s  have a f i n i t e  s i z e  of t h e  

o r d e r  l / k  and t h e r e f o r e  t h e i r  i n t e r a c t i o n  w i t h  o t h e r  e d d i e s  

must be nonloca l .  Furthermore,  i n  c o n t r a s t  t o  equa t ion  ( 2 . 1 )  

e q u a t i o n  ( 2 . 1 2 )  i s  l i n e a r .  However, t h e  n o n l i n e a r i t y  

appears  h e r e  i n  t h e  equa t ion  f o r  t h e  energy spectrum, 

t h e  s o l u t i o n  of which has  t o  be known i n  o r d e r  t o  

- - 

This  behavior  i s  n o t  
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c o n s t r u c t  t h e  k e r n e l  func t ion  K ( l = l )  accord ing  t o  

equa t ion  ( 2 . 1 1 ) .  S ince  t h e  equa t ion  f o r  t h e  energy 

spectrum can be on ly  so lved  af ter  t h e  flow problem i s  

determined,  o r  has  t o  s o l v e  the  system o f  both  e q u a t i o n s  

s e l f - c o n s i s t e n t l y .  

f r o m  the  e q u a t i o n s  of motion is  a g r e a t  advantage over 

t h e  Navier S tokes  equat ions .  

of  motions s i m p l i f i e s  g r e a t l y  t h e  s o l u t i o n  of t h e  set 

of equa t ions  d e s c r i b i n g  the  motion of t u r b u l e n t  flow. 

This  w i l l  be  demonstrated f o r  t h e  impor t an t  problem of 

f r e e  t u r b u l e n t  convect ion t r e a t e d  below. 

But t h e  removal o f  t h e  n o n l i n e a r i t y  

The l i n e a r i t y  i n  t h e  e q u a t i o n s  

. .  

I _ .  
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3 .  Turbulent Convection. 

The theory outlined in the preceding paragraph can be 

easily generalized to include turbulent convection. This may 

be of significance for the treatment of convection problems in 

stellar ana planetary atmospheres. 

Heisenberg's theory is ;crlici only for fluid motions of 

Small Mach n~nd~rs. Therefore, in applying Eeisenberg's theory to 
convection problems we dre Lestricted to the Roussinesq approximation 141 

with the following equations of motion 

and the energy equation 

to be Supplemented by 

In the equations (3.1) - (3.21, T' and p' are the 
perturbations of the temperature and pressure fields. a is 

the thermalexpansion coefficient, 8 = -VAT is the excess 

of the temperature gradient over the adiabatic temperature 

gradient, and eZ is a unit vector in the vertical direction. 

the heat conduction coefficient. 

- 

x is 

To finu the implications of Heisenberg's concept on the 

set of equations (3.1) - (3.3) we again have to derive the 

equations fo r  the turbulent energy spectrum. There we need in 
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acidition to F(k,t) defined by ( 2 . 7 )  the following spectral 

functions 
/ 

( 3 . 4 )  
t 

k2 I <TI (k,t)T'* - (k,t) - >dQ 3 G(k,t) = 
871 

1 v 2  
8a  

fi(k,t) = - - k 2; I {<v(&,t)T*' (k,t) - > + <x* (k,t)T' (k,t) - >Idst .) 1 3 . 5 )  

By the same procedure as before we obtain from (3.1) and ( 3 . 2 )  the 

following equations for the 'spectral functions 
1 

0 

- - -  aF - 2 v k  F - 2gaH - 1 Q(k,k')dk' ? ( 3 . 6 )  2 
at 

kO 

Q) 

2 - - -  aG - 2xk G - 2BH - I U(k,kL)dk' 
at ( 3 . 7 )  

In equation ( 3 . 7 )  U(k,k') is mixea trilinear in temperature and 

velocity. This set of equations , in order to have a solution, 
must be Supplemented by an additional relation between the 

functions F , G  and h. In the theory of LedOux,Schwarzschild and 

Spiegel (5) it is assumed that the velocity ana temperature 

fluctuations are in phase which is expressed by 

To formulate the equations for the spectral functions in 

the spirit of heisenberg's eddy viscosity hypothesis it is 

rather obvious that we have to make the same approximation for 

C(k,k') as in (2.9). For the third term on the r.h.s. of 

equation ( 3 . 7 )  however, we have to make an additional 

hypothesis not contained in Heisenberg's theory. By 
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comparing equa t ion  (3.6) and (3.7) one'may connec t  

t h e  t h i r d  term on t h e  r .h.s.  of (3 .7 )  w i t h  t h e  h e a t  t r a n p o r t e d  by 

eddies. It is t h u s  tempting t o  p u t  i n  analogy t o  equa t ion  (2.9) 

OD OD k 
1 dkl/ U(k',k")dk'' = 2 ~ ( k )  / G ( k ' ) k t 2 d k '  I (3.9) 
kc) kO kO 

where x (k )  is  a wave-number-dependent eddy h e a t  conduct ion c o e f f i c i e n t .  

The h e a t  conduct ion c o e f f i c i e n t  fo r  an ideal gas i s  r e l a t e d  

t o  t h e  k inemat ic  v i s c o s i t y  v by 

x = V / Y  I (3.10) 

where y is t h e  s p e c i f i c  h e a t  ra t io .  

Depenaing on t h e  number of degrees  of  freedom of t h e  

gas molecules ,  which are i n  between 3 and 6 ,  w e  have 

4/3 < y e  5/3 . (3.11) 

I f  t h e  tempera ture  and v e l o c i t y  f l u c t u a t i o n s  are i n  phase 

as  assumed by Le6eoux, Schwarzschild and S p i e g e l  a propor- 

t i o n a l i t y  similar t o  (3.10) should  a lso hold for  t h e  edaies 
- 

d e s c r i b i n g  t h e  t u r b u l e n t  v e l o c i t y  f i e l d ,  p h i s  i m p l i e s  

3/5 <a< 3/4 (3.12) 

We t h u s  have 

k k OD 

I dk '  U(k',k'')dk'' = 2av(k)  I G ( k ' ) k ' 2 d k ' .  (3.13) 
ko kO kO 
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The r .h . s .  of eq. (3.13) has  t h e  same prope r ty  as U, t h a t  

i s ,  it is  b i l i n e a r  i n  t h e  temperature  and l i n e a r  i n  t h e  v e l o c i t y  

f l u c t u a t i o n .  

I n  analogy t o  (2.10) w e  i n t roduce  a second t u r b u l e n t  h e a t  

conduct ion c o e f f i c i e n t  x ( k )  def ined  

hence, w e  o b t a i n  f o r  t h e  spectral func t ions  F,G and €i t h e  fol lowing 

set of equa t ions  

- . - =  
a F  a t  2{u  .+ u , ( k )  )k2F - 2gaH 

(3.15) 

I n  stellar atmospheres t h e  h e a t  t r a n s p o r t  by r a d i a t i o n  is much 

l a r g e r  t han  t h e  h e a t  t r a n s p o r t  by turbulence .  For  t h i s  reason ,  

t h e  h e a t  t r a n s p o r t  by convect ion can be neg lec t ed  as was done 

i n  t h e  theo ry  of L e d o u ,  Schwarzschi ld  and Sp iege l .  I n  t h e i r  

t r e a t m e n t  t h e  secona equa t ion  (3.15) is  approximated by 

, (3.16) 2 xk G = $H 

or  by e l i m i n a t i n g  G from (3.16) w i t h  t h e  t h i r d  eq. (3.15) w e  have 

. (3.17) 
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Finally insertinu expression (3.17) into the first equation of 

(3.15) one obtains the equation by Ledoux, Sckwarzschild and 

Spiegel for  the eneray spectrum of free turbulent convection. 

precedinu chapter it is now easy to construct 

equations of motions for turbulent convection which are 

consistent with the equations for the spectral functions (3.15). 

In analogy to (2.11) I we introduce the function 

hc in the 

I (3.18) 

and replace (3.1) anC (3.2) bv the followinq new set of 

equations 

The first two eq. of (3.15) for the spectral functions F, G 

and E follow from (3.19) and (3.20). The proof is straightforward 

and sirnilar to the derivation of equation (2.14) from (2.12). 

4 .  Dispersion Relations and Growth Rates for Free Turbulent - 
Convection. 

In the classical treatment of thermal convection, the equations 
--- 

(3.1) and (3.2) are linearized by omitting the nonlinear terns 

(v*V)v - - and - v*VT'. The resulting set of equations is then 
Fourier - analyzed in space and time into the following principal 
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modes of convection (v={u,v,w), v velocity amplitude) - 

u = + v -  k2kX cos(k&sin(k y)cos(kzz)e nt 0 

k2' Y 

v = +V kzk sin(kxx)cos(k y)cos(k2z)ent, 
k Y 

kL+kL 
w = +V ysin(kxx)sin(kyy)sin(k 2 z)ent, 

k 
2 

T' = +V n+vk sin(k,x)sin(k y)sin(kzz)ent, 
ga Y 

( 4  . 1) 

p' = -v n+ vk - kZ sin (kxx) sin(k y) cos ( k Z z )  e nt . 
k k Y 

The growth rate n for these principal modes is determined 

by the following characteristic equation or dispersion relation: 

where 

p = 4 v x  - 4Pr 
b + X l 2  - (l+Prl2 

(4.3) 

Pr = v /x  is the so-called Prandtl number. 

The dispersion equ&ion (4 . 2) has two solutions corresponding 
to two possible signs. This means ea. (4.1) describes two modes, 

stable and unstable. The stable modes are interpreted physically 

by falling currents, and the unstable modes by rising Currents. 

In addition to the two modes given by equation (4.1) the 

equations of motions permit one more mode in which only 
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horizontal velocities occur. This mode is represented by 

I u - +V +os k (k,x) sin (k y )  cos (kZz)  ent Y 

kx nt v -V p i n  (kxx)cos (k y )  cos (kZz) e I 
Y 

w = T' = P' = 0,  ( 4 . 4 )  

8 .  

and the dispersion relation determining the growth rate 

2 n =-vk ( 4 . 5 )  

The solution given by the classical theory is only applicable 

to laminar convection problems. However, since most convection 

phenomena in atmospheres are'turbulent, the classical theory 

breaks down. The turbulent equations of motion which have 

been derived in the preceding chapter can be used to calculate 

turbulent convection problems in an approximation consistent 

with Heisenberg's theory. 

In the turbulent problem, we have to make a Fourier analysis 

of equations (3.19) and (3 . 20) together with the supplementary 
equation (3.3). 

obtained as follows: 

k space which is defined by 

The solution of the turbulent problem is then 

We introduce a total viscosity v*(k) in 

v*(k)  = v + vE(k) 

and similarly a total heat conduction coefficient . 

x*(k) = x + xE(k) . (4 .7 )  

With these wave number dependent coefficients 8 we obtain the 



following principal modes of turbulent convection 
I , n* t kzkx os (kxx) sin (k y) cos (kZz) e ? 

= Y 

n* t v - + V - q s i n  (k,x) cos (k y) cos (k,z) e 
k k  

k Y 
? 

T’ = +v”+v*kLsin(kxx)sin(k y)ain(kzz)e n* t 
ga Y 

n* t 
in(kxx)sin(k y)cos(kzz)e I P ’ =  . r p  -p+ v* k2 kz 

Y 

where the turbulent growth rate n* for the modes are given by 

with - .  
(4.10) 

Quite analogous to the laminar mode (4.41, there is an additional 

mode involving horizontal velocities only and which in the 

turbulent case is given by 

n* t u = +V)rcos (kxx) sin (k y) cos (kzz) e 
k 

Y 
? 

n* t v - - V p i n  kX (kxx) cos (k y) cos (k,z) e Y 

w = T’ p’  31 0 ? (4.11) 

, 
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with the growth rate 

. .  

. (4.12) 2 n* = -v*(k)k 

Eq. ( 4 . 8 )  - (4.12) have the same character as the corresponding 
laminar equations (4.1) - (4.5). The only difference between 

both solutions, the laminar and the turbulent, is in the 

replacement of the viscosity and heat conduction coefficierks by their 

total values involving the wave-number dependent eddy transport 

coefficients as defined by eq. (4.6) and (4.7). The eddy 

viscosity and eddy-heat conduction coefficients have to be calculated 

from (2.10) and (3.14) by using the expressions for the spectral 

functions F and G. However, the form of the spectral functions 

is known only after the growth rates have been calculated. 

this it follows that the expressions for the growth rates have 

to be solved self-consistently with the equations (3.15) for the 

From 

spectral functions F, G and H. 

In the case of a steady state convection one has obviously 

and 

I (4 ..13) 

The equations for the spectral function thus take the final form 

n*F = {v + vL(k) )k2F - gaH 

(4.14) 
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The equations (4.14) for the spectral functions have to be 

solved simultaneously with the growth rate functions n*(k) given 

by (4.9) - (4.12) which involves the knowledge of F and G 
through vE(k) and x,(k). 

fox the spectral functions making the approximation (3.16) 

have been obtained by the Ledowc, Schwarzschild and Spiegel 

in their paper which was quoted earlier. In their case, it 

was demonstrated that the Kolmogomff-law for the spectral 

Solutions of these equations 

function F(k)  was valid over a large range of wave lengths. 

For obtaining first approximation results it may be therefore 

tempting to calculate vE(k) and x , ( k )  fqQln (2.10) and (3.14) by 

assuming the validity of the Kolmogoroff k -'I3 power law . 
5. Conclusion - 

Equations of motion €or turbulent flow have been derived 

which are consistent with Heisenberg's statistical theory of 

turbulence in the snse that Heisenberg's equation for the 

energy spectrum is an exact consequence of it. In contrast 

to other phenomenological theories which make some a priori 

assumption concerning eddy transport coefficients the theory 

presented in this paper is non!.xal, and as a consequence 

of the nonlocality the equations are integro-differential 

equations. 

The theory may be very useful to determine the character of 

complicated convection problems in stellar or planetary 

atmospheres which otherwise can be treated by numerical analysis 

The theory is extended to include turbulent convection. 

only under immense computational efforts. 
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